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FFT-BASED GRADIENT SPARSIFICATION FOR THE DISTRIBUTED TRAINING
OF DEEP NEURAL NETWORKS

ABSTRACT
The performance and efficiency of distributed training of Deep Neural Networks (DNN) highly depend on the
performance of gradient averaging among all participating nodes, which is bounded by the communication
costs. There are two major solutions to reduce communication overhead: one is to overlap communications with
computations (lossless), and the other is to reduce communications (lossy). The lossless solution works well for
linear neural architectures, e.g. VGG, AlexNet, but the latest networks such as ResNet and Inception render the
limited opportunity for such overlapping. Therefore, researchers have paid more attention to lossy methods. In this
paper, we present a novel, explainable lossy method that sparsifies gradients in the frequency domain, in addition
to a new range-based float point representation to quantize and further compress gradients. These techniques
are dynamic, which strikes a balance between compression ratio, accuracy, and computational overhead, and
highly optimized to maximize performance in heterogeneous environments. We also sketch proves to show how
the FFT sparsification θ, the ratio of dropped information, affects the convergence and accuracy, and show that
our method is guaranteed to converge using a diminishing θ in the training. Compared to STOA lossy methods,
e.g. QSGD, TernGrad, and Top-k sparsification, our approach incurs less approximation error, thereby better in
both the wall-time and accuracy. On an 8 GPUs, InfiniBand interconnected cluster, our techniques effectively
accelerate AlexNet training up to 2.26x to the baseline of no compression, and 1.31x to QSGD, 1.25x to Terngrad
and 1.47x to Top-K sparsification.

1 INTRODUCTION

Parameter Server (PS) and allreduce-style communications
are two core parallelization strategies for distributed DNN
training. In an iteration, each worker produces a gradient,
and both parallelization strategies rely on the communica-
tion network to average the gradients across all workers. The
gradient size of current DNNs is at the scale of 102 MB, and,
even with the state-of-the-art networks such as Infiniband,
repeatedly transferring such a large volume of messages
over millions of iterations is prohibitively expensive. Fur-
thermore, the tremendous improvement in GPU computing
and memory speeds (e.g., the latest NVIDIA TESLA V100
GPU features a peak performance of 14 TFlops on single-
precision and memory bandwidth of 900 GB/s with HBM2)
further underscores communication as a bottleneck.

Recently, several methods have shown that training can be
done with a lossy gradient due to the iterative nature of
Stochastic Gradient Descent (SGD). This opens up new
opportunities to alleviate the communication overhead, by
aggressively compressing gradients. One approach to com-
press the gradients is quantization. For example, Tern-
grad (Wen et al., 2017) maps a gradient into [-1, 0, 1], and
QSGD (Alistarh et al., 2017) stochastically quantizes gradi-
ents onto a uniformly discretized set larger than that of Tern-
grad. Such coarse approximation not only incurs large errors
between the true and quantized gradients as we demonstrate
in Figure 15 [QSGD, TernGrad], but also ignores exploiting

the bit efficiency in the quantization (Figure 7). Another ap-
proach to gradient compression, sparsification, only keeps
the top-k largest gradients (Han et al., 2015; Aji & Heafield,
2017; Alistarh et al., 2018). Similarly, Top-k loses a signifi-
cant amount of true gradients around zeros to achieve the
high compression ratio (Figure 15, [Top-k]). In summary,
existing lossy methods greatly drop gradients, incur large
approximation errors (Figure 15e), leading to deteriorations
in the final accuracy (Table 1). To avoid compromising
the convergence speed, both quantization and sparsifica-
tion must limit compression ratio, leading to sub-optimal
improvement of the end-to-end training walltime.

In this paper, we propose a gradient compression frame-
work that takes advantages of both sparsification and
quantization with two novel components, FFT-based spar-
sification, and a range-based quantization. FFT-based spar-
sification allows for removing the redundant information,
while still preserving most relevant information (Figure 15
[FFT]). As a result, FFT incurs fewer errors in approximat-
ing the original gradients (Figure 15e), thereby better in
accuracy than QSGD, TernGrad, and Top-K (Table 1). We
treat the gradient as a 1D signal, and drop near-zero coeffi-
cients in the frequency domain, after an FFT. Deleting some
frequency components after the FFT introduces magnitude
errors, but the signal maintains its distribution (Figure 5).
As a result, the sparsification in the frequency domain can
achieve the same compression ratio as in the spatial domain
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but preserving more relevant information.

To further improve the end-to-end training wall time, we in-
troduce a new range-based variable precision floating point
representation to quantize and compress the gradient fre-
quencies after sparsification. Most importantly, unlike the
uniform quantization used in existing approaches, the preci-
sion of representable floats in our method can be adjusted to
follow the distribution of the original gradients (Figure 9).
The novel range-based design allows us to fully exploit the
precision given limited bits so that the approximation error
can be further reduced. By combining sparsification and
quantization, our framework delivers a higher compression
ratio than the single method, resulting in shorter end-to-end
training wall time than QSGD, Terngrad, and Top-k.

Lastly, our compression framework also delivers high per-
formance. The primitive algorithms in our compression
scheme, such as FFT, top-k select, and precision conver-
sions, are efficiently parallelizable and thus GPU-friendly.
We resort to existing highly optimized GPU libraries such
as cuFFT, Thrust, and bucketSelect (Alabi et al., 2012),
while we propose a simple yet efficient packing algorithm
to transform sparse gradients into a dense representation.
Minimizing the computational cost of the compression is
crucial to be beneficial in very fast networks, such as current
and future Infiniband networks, as we analyzed in Figure 10.

Specifically, the contributions of this paper are as follows:

• a novel FFT-based, tunable gradient sparsification that
retains the original gradient distribution;

• a novel range-based variable precisions floating-point
that allocates precision according to the gradient distri-
bution;

• the convergence proof of our methods, and its guidance
in selecting compression hyper-parameters, e.g. drop
out ratio θ, to ensure the convergence.

• highly optimized system components for a compression
framework that achieves high throughput on GPUs and is
beneficial even on state-of-the-art Infiniband networks.

2 BACKGROUND AND MOTIVATION

In general, there are two strategies to parallelize DNN train-
ing: Model Parallelism and Data Parallelism. Model Par-
allelism splits a network into several parts, with each being
assigned to a computing node (Dean et al., 2012). It de-
mands extensive intra-DNN communications in addition to
gradient exchanges. This largely restricts the training per-
formance, and thereby Model Parallelism is often applied
in scenarios where the DNN cannot fit onto a computing
node (Dean et al., 2012). The second approach, Data Paral-
lelism (Wang et al., 2017), partitions the image batch, and

(a) BSP (b) PS

Figure 1. Two parallelization schemes of distributed DNN
training:(a) Bulk Synchronous Parallel (BSP) strickly synchro-
nizes gradients with all-to-all group communications, e.g. MPI
collectives; (b) Parameter Server (PS) exchanges gradients with
point-to-point communications, e.g. push/pull.

every computing node holds a replica of the network. In
a training iteration, a node computes a sub-gradient with
a batch partition. Then, nodes all-reduce sub-gradients to
reconstruct the global one. The only communications are
for necessary gradient exchanges. Therefore, current Deep
Learning (DL) frameworks such as SuperNeurons (Wang
et al., 2018), MXNet (Chen et al., 2015), Caffe (Jia et al.,
2014), and TensorFlow (Abadi et al., 2016) parallelize the
training with Data Parallelism for the high-performance.

There are two common strategies to organize the communi-
cations with data parallelism: with a centralized Parameter
Server (PS) (Figure 1b), or with all-to-all group commu-
nications, e.g., allreduce (Figure 1a). TensorFlow (Abadi
et al., 2016), MXNet (Chen et al., 2015), and PaddlePad-
dle implement distributed DNN training with a Parameter
Server (PS) (Li et al., 2014). In this distributed frame-
work, the parameter server centralizes the parameter updates,
while workers focus on computing gradients. Each worker
pushes newly computed gradients to the parameter server,
and the parameter server updates parameters before sending
the latest parameters back to workers. Though this client-
server (Berson, 1992) style design easily supports fault tol-
erance and elastic scalability, the major downside is the
network congestion on the server. Alternatively, allreduce-
based Bulk Synchronous Parallel SGD can better exploit
the bandwidth of a high-speed, dense interconnects, such as
modern Infiniband networks. Instead of using a star topol-
ogy, allreduce pipelines the message exchanges at a fine
granularity with adjacent neighbors in a ring-based topology.
Since the pipeline fully utilizes the inbound and outbound
link of every computing node, it maximizes network band-
width utilization and achieves appealing scalability where
the cost is largely independent of the number of computing
nodes.

There are tradeoffs between the BSP and PS schemes, with
PS having better fault tolerance, and allreduce better ex-
ploits the network bandwidth, but, as we argue below, in
both cases the communication cost is significant, and reduc-
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Figure 2. layer-wise communications (all-reduce) v.s. compu-
tations in an iteration of BSP SGD using 16 P100 (4 GPUs/node
with 56Gbps FDR).

ing it can yield substantial gains in training latency.

2.1 Communication Challenges in Distributed
Training of DNNs

Communications for averaging sub-gradients of all work-
ers is widely recognized as a major bottleneck in scaling
DNN training(Zhao et al., 2017; Dean et al., 2012; Wang
et al., 2017). With increasing data complexity and vol-
ume, and with emerging non-linear neural architectures, we
have identified two critical issues that exacerbate the impact
of communications in the scalability and efficiency of dis-
tributed DNN training with data parallelism: I) increasing
bandwidth requirements, and II) the decreasing opportunity
to overlap computation and communication.

Challenge I: Very large bandwidth requirements during
training DNNs are extremely effective at modeling com-
plex nonlinearities thanks to the representation power of
millions of parameters. The number of parameters dictates
the size of the gradients. Specifically, the gradient sizes of
AlexNet, VGG16, ResNet32, and Inception-V4 are 250MB,
553MB, 102MB, and 170MB. Even with the highly opti-
mized ring-based allreduce on a 56 Gbps FDR network,
communication overhead remains significant. For example,
the communication for AlexNet, VGG16, Inception-V4 and
ResNet32 at regular single-GPU batch sizes 1 still consumes
64.17%, 18.62%, 33.07%, 43.96% of an iteration time, re-
spectively.

Challenge II: Decreasing opportunity to overlap com-
putation and communication One promising solution to
alleviate the communication overhead is hiding the commu-
nication for the gradient averaging of ith layer under the
computation of i−1th layer in the backward pass. This loss-
less technique has proven to be effective on linear networks
such as AlexNet and VGG16 (Awan et al., 2017; Rhu et al.,
2016), as these networks utilize large convolution kernels
to process input data. Figure 2a demonstrates the compu-
tation time of the convolution layers is 10× larger than the
communication time, easy for overlapping. However, the
opportunity for the computation and communication over-

1the single GPU batch size for AlexNet is 64, and 16 for others.

lapping is very limited in recent neural architectures, such as
Inception-V4 (Szegedy et al., 2017) and ResNet (He et al.,
2016). The sparse fan-out connections in the Inception Unit
(Figure 1a in (Wang et al., 2018)) replace one large con-
volution (e.g. 11×11 convolution kernel in AlexNet) with
several small convolutions (e.g. 3×3 convolution kernels).
Similarly, ResNet utilizes either 1×1 or 3×3 small convolu-
tion kernels. As a result, the layerwise computational cost
of ResNet is similar to communication (Figure 2b), much
harder to overlap than AlexNet.

These two challenges – increasing data exchanged, and de-
creasing opportunity to hide communication latency – make
it attractive to look for solutions that instead decrease the
communication volumes. Training a neural network with
imprecise gradient updates still works as parameters are
iteratively refined (Aji & Heafield, 2017). Particularly, lossy
gradient compression can achieve greater compression rates
and still allow the network to achieve target accuracies (Alis-
tarh et al., 2017). Given this, it is not surprising that several
gradient compression approaches have been proposed in the
literature. They generally fall into two categories: quanti-
zation of the gradients (e.g. (Seide et al., 2014; Wen et al.,
2017; Alistarh et al., 2017; De Sa et al., 2015)), where these
are represented with lower precision numbers, and sparsi-
fication (e.g. (Aji & Heafield, 2017; Alistarh et al., 2018;
Wangni et al., 2018)), where small gradient are treated as
zero and not transmitted. We discuss these approaches in
detail in Section 5. As we describe next, we propose a
novel gradient compression scheme that uses adaptive quan-
tization and tunable FFT-based gradient compression that,
together, achieve variable compression ratios that can main-
tain convergence quality, and, critically, is cheap enough
computationally to be beneficial.

3 METHODOLOGY

3.1 The Compression Framework

Figure 3 provides a step-by-step illustration of our compres-
sion pipeline. First, we linearize gradients by re-arranging
gradient tensors into a 1-d vector for Fast Fourier Transform
(FFT). Second, we truncate the gradient frequencies based
on their magnitudes to sift out the low-energy frequency
components. Third, we transform the frequencies’ repre-
sentation from 32-bit float to a new, range-based, N -bit
float (N < 32) to further compress down the gradient fre-
quency. Finally, the compressed gradient frequency vector
is transferred out. On the receiver side, it follows the same
procedure but in the reverse operation and reverse order to
decompress the gradient frequency vector into gradients.
Detailed discussions of compression components and their
motivations are as follows.
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Figure 3. The gradient compression pipeline.
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Figure 4. Histogram of DNN gradients: we sampled gradients
every 103 and 104 iterations in a full training.
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Figure 5. FFT Top-k v.s. direct Top-k sparsificaiton: Top-k ag-
gressively loses gradients (err=0.0246), while FFT preserves more
relevant information (err=0.0209) at the same sparsification ratio.

3.1.1 Removing redundant information with FFT based
Top-K sparsification

Motivation: the gradient points to a descent direction in
the high dimensional space, thereby small perturbations
on gradients can be viewed as introducing local deviations
along the descent direction. If such deviations are limited
during the training, these imprecise descent directions still
iteratively lead to a local optimum at the cost of additional
iterations. This is the intuition for the gradient sparsification.
Besides, Figure 4 indicates high redundancy in DNN gra-
dients due to a lot of near-zero components, that may have
limited contributions in updating gradients. Recently, sev-
eral top-k based methods (Han et al., 2015; Aji & Heafield,
2017; Alistarh et al., 2018) have also shown the possibility
to train DNNs with only top 10% largest gradients. But
the resulting gradients, as shown in Figure 5, significantly
deviate from the original, for entirely dropping the gradi-
ents below the threshold. This has motivated us to sparsify

gradients, instead, in the frequency domain for preserving
the trend of the original signal even after removing the same
amount of information. For a gradient vector of length N,
each gradients is gi =

∑N−1
n=0 xne

−i2πkn
N after FFT. If we

sparsify on xn, i.e. gi =
∑topk
n xne

−i2πkn
N , gi still pre-

serves some of the original gradient information. Therefore,
FFT based top-k shows better results than top-k in Figure 5.
More validations are available in the experimental section.

Our apporach: The detailed computation steps of our FFT
sparsification are highlighted by Figure 3. Recent gener-
ations of NVIDIA GPUs support mixed precisions; and
computing with half-precision increases the FFT throughput
up to 2×. So, we convert 32-bit (full-precision) gradients
into 16-bit (half-precision) gradients to improve the through-
put, and the information loss from the conversion is neg-
ligible due to the bounded gradients. We introduce a new
hyper-parameter, θ, to regulate the sparsity of frequencies.
Here, we only describe the procedures, and the tuning of
θ is thoroughly discussed in Section 3.5 and experiments.
If θ = 0.9, we keep the top 10% frequency components in
magnitude and drop the rest by resetting to zeros (Figure 3).
The selection is implemented with either sorting or Top-k.
Since Thrust2 and cuFFT 3 provide highly optimized FFT
and sorting kernels for the GPU architecture, we adopted
them in our implementations.

Thresholding gradient frequencies yield a highly irregular
sparse vector, and we need to pack it into a dense vector
to reduce communications. The speed of packing a sparse
vector is critical to the practical performance gain. Here, we
propose a simple parallel packing algorithm:

• First, we create a status vector and mark an element
in status as 1 if the corresponding scalar in sparse
vector is non-zero (e.g., sparse = [a, 0, b, 0, c, 0, 0]
and status = [1, 0, 1, 0, 1, 0, 0]).

• Second, we perform a parallel prefix-sum on status to
generate a location vector ([1, 1, 2, 2, 3, 3, 3]).

2https://developer.nvidia.com/thrust
3https://developer.nvidia.com/cufft
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Figure 6. the effect of status vector: given 100 MB gradients,
the improvement after dropping > 90% gradients (θ = 0.9) is
limited.
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Figure 7. comparisons of quantization schemes: the uniform dis-
tribution and IEEE 754 format.

• Third, if status[i] == 1, we write sparse[i] to
dense[location[i]], and dense vector is the packed
result.

This parallel algorithm has a 689× speedup over the single-
threaded algorithm on a TESLA V100 with a throughput of
34 GB/s.

We need to send the status vector and the compressed gra-
dient to perform the decompression. The status vector is a
bitmap that tracks the location of non-zero elements, and its
length in bits is the same as the gradient vector. Figure 6
shows the cost of the status vector is non-negligible after the
compression ratio exceeding 20. Therefore, setting θ < 5%
is not desired.

3.1.2 Range based Quantization

Motivation: the range of single precision IEEE-754 float-
ing point is [−3.4 ∗ 1038,+3.4 ∗ 1038], while the range of
gradients and their frequencies are much smaller (e.g. [-1,
+1]). This motivates us to represent the bounded gradients
with fewer bits. The problem of using an N bits IEEE 754
format, as seen in Figure 7, is the inconsistency between
the range of gradients [min, max] and the range of the
IEEE representable numbers. Given N bits for IEEE 754,
there are N − 2 combinations of exponent-mantissa. The
representation range is either too large or too small for gradi-
ents, regardless of which combinations to choose. Another
conventional way is to equally divide the max−min into
2N , i.e. uniform quantization. Still, the true gradient distri-
bution is far from the uniform, thereby it is also inefficient
as shown in Figure 7.

Our apporach: we propose an offset-based N-bit float-
ing point, which intends to match the distribution of repre-
sentable numbers to the real gradients. Our representation is
to use the N-bit binary format of a positive number as base
number pbase, and encode it to 0...01. The rest positive
numbers are encoded as 0...01 (pbase) + offset. The nega-
tive numbers also follow the same rule. Therefore, the total
2N representable numbers consist of P positive numbers
and 2N − P negative numbers. To match the range of real
gradients, our quantization permits the manual setting of a
representation range, defined by min and max. We esti-
matemin andmax from the first few iterations of gradients.
Then, we tune m and eps to adjust the precisions of repre-
sentable numbers, as shown in Figure 7. m represents the
number of bits left for the mantissa, and eps represents the
minimal representable positive number whose correspond-
ing N-bit binary is pbase. The following further explains
how m and eps adjust precisions:

• m: let’s denote the difference between two consecu-
tive numbers as diff . For m bits mantissa, the expo-
nent increases by 1 after 2m number, and increasing
diff = diff ∗ 2. Since diff is exponentially grow-
ing, this creates a gaussian like representation range
that matches to real gradients. If max, min and eps
are fixed, P is small for a small m, as it takes fewer
numbers to increase the exponent. Similarly, a large m
leads to a larger P . Therefore, m is very sensitive for
precisions.

• eps: with max, min and m, diff is also fixed. If eps
is small, it takes more steps to reach max yielding a
large P ; and vice versa.

Since m and eps determine P , we need to tune them to
make P close to 2N/2 for balancing the range of positive
and negative number. In practice, N , min and max are
empirically decided from gradients, and the m ∈ [1, N ].
We iterate every m to tune for eps. Given N , m, min and
max, we initialize eps as a reasonably small number, e.g.
0.002, then de-compress the 1..1 (the minimal representable
negative number) back to FP32 with the selected eps, and
the resulting number is the current actual minimal negative
number actual min; if actual min is smaller than min,
we decrease eps, and increase otherwise. Following this
path, P converges to 2N/2, a state with equal positive and
negative numbers, and yielding the optimal eps.

Alg. 1 summarizes the conversion from 32-bit IEEE 754
to our N-bit offset based float, and N is set w.r.t the pre-
cision requirement for the training. Figure 8 provides a
stey-by-step conversion between IEEE 754 and 8 bits our
representation.

Figure 9 shows the resulting number distributions of our
approach when the range is set to [-0.5, 0.5], and [-5, 5].
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Configurations: m = 3; max = 2; min = -2; eps = 0.125
pbase = eps >> (23-3) = 001111100000

input = 0.256

00111110100000110001001001101111

001111101000

output = 00001001

input = 00001001

output = 0.25

001111101000

00111110100000000000000000000000

Dec to IEEE-754 Bin

cut off the rightmost 20 bits

minus  pbase, and  add 1

add pbase, and minus 1

fill the rightmost 20 bits with 0

IEEE-754 Bin to Dec

32-bit IEEE-754 to 8-bit offset-based 8-bit offset-based to 32-bit IEEE-754

Figure 8. Illustration of range based quantizer: an example con-
version of between 32 bits IEEE 754 and 8 bits our representation.

Algorithm 1: Offset-based N -bit floating point
Input: init(min, max)

1 pbase binary = eps >> (23−m) ;
Input: 32bit to Nbit(32bit float)

2 if 32bit float>max then
3 32bit float =max;

4 32bit binary = 32bit float >> (23−m) ;
5 Nbit binary = 32bit binary − pbase binary + 1 ;

Input: Nbit to 32bit(Nbit binary)
6 32bit binary = Nbit binary + pbase binary − 1 ;
7 32bit float = 32bit binary << (23−m) ;
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Figure 9. Adjustable representation range: our quantization suc-
cessfully adjusts its distribution.

This shows our approach successfully adjusts representa-
tion ranges, while still maintaining similar distribution to
actual gradients. This is because diff increases 2x after
2m numbers, leading to more numbers around 0, and less to
max or min. Unlike prior static approach, our offset based
float dynamically changes the representable range to sustain
the various precision requirements from different training
tasks. Besides, the float quantizations are embarrassingly
data-parallel, it is easy to achieve the high-performance.

3.2 Sensitivity Analysis

The compression cost shall not offset the compression ben-
efit to acquire practical performance gain. In this section,
we analyze the performance of compression primitives and
network bandwidth toward the performance. We can define:
k as the overall compression ratio; Tm as the throughput
of precision change and thresholding—we use the same
notation as they are O(N) algorithms and embarrassingly
parallel; Tf as the throughput of FFT; Tp as the throughput
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Figure 10. Minimal compression ratio k exhibits performance
benefits at different network bandwidths Tcomm, packing through-
put Tp and selection throughput Ts. k is the overall compression
ratio; Tm is the throughput of quantization and thresholding. We
assume similar costs on both O(N) operations as they are embar-
rassingly parallel; Tf is the throughput of FFT. It is easy to get
performance improvement from a slow network, while it requires
faster compression primitives to be beneficial on a fast network.

of packing; Ts as the throughput of Top-k selection; and
Tcomm as the throughput of communications.

Given a message of size M , the cost of compression
is costcomp = M( 4

Tm
+ 1

Tf
+ 1

Tp
+ 1

Ts
) (the nota-

tions are defined in Figure 10). The compression saves
saved costcomm = M

Tcomm
(1 − 1

k ). 2costcomp <
saved costcomm must hold to acquire the practical perfor-
mance gain, k > 1

1−2Tcomm( 4
Tm

+ 1
Tf

+ 1
Tp

+ 1
Ts

)
. The perfor-

mance of Tm depends on the GPU DRAM bandwidth, and
Tf depends on cuFFT. Therefore, we vary Tp, Ts and Tm
in 1

1−2Tcomm( 4
Tm

+ 1
Tf

+ 1
Tp

+ 1
Ts

)
to calculate the minimal k.

Figure 10 shows that k is extremely sensitive to Tp and Ts as
Tcomm > 4, indicating that the performance of compression
primitives is critical to a high-end network like InfiniBand.

3.3 Convergence Analysis

Here we present the convergence analysis of the proposed
techniques. We formulate the DNN training as:

min
x
f(x) :=

1

N

N∑
i=1

fi(x), (1)

where fi is the loss of one data sample to a network. For non-
convex optimization, it is sufficient to prove the convergence
by showing ‖∇f(xt)‖2 ≤ ε as t →∞, where ε is a small
constant and t is the iteration. The condition indicates the
function converges to the neighborhood of a stationary point.
Before stating the theorem, we need to introduce the notion
of Lipschitz continuity. f(x) is smooth and non-convex,
and ∇f are L-Lipschitz continuous. Namely,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

For any x, y,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2.
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Assumption 3.1 Suppose j is a uniform random sample
from {1, ..., N}, then we make the following bounded vari-
ance assumption:

E[‖∇fj(x)−∇f(x)‖2] ≤ σ2, for any x.

This is a standard assumption widely adopted in the SGD
convergence proof (Nemirovski et al., 2009) (Ghadimi &
Lan, 2013). It holds if the gradient is bounded.

Assumption 3.2 In the data-parallel training, the gradient
of each iteration is v̄ = 1

p

∑p
1 vi; p is the number of pro-

cesses, and vi is the gradient from the ith process. Let’s
denote θ ∈ [0, 1] to control the percentage of information
loss in the compression function v̂i = T (vi, θ) that does
quant(FFT-sparsification(vi)), so ¯̂v =

∑p
1 v̂i. We assume

there exists a α such that:

‖v̄ − ¯̂v‖ ≤ α‖v̄‖.

So, v̂ only loses a small amount of information with respect
to v̄, and the update from the sparsified gradient is within a
bounded error range of true gradient update. It is a necessary
condition for deriving the upper bound.

With our compression techniques, one SGD update becomes:

xt+1 = xt − ηt(
1

P

p∑
1

v̂i) = xt − ηt ¯̂vt. (2)

Then, we have the following lemma for one step:

Lemma 3.3 Assume ηt ≤ 1
4L , θ

2
t ≤ 1

4 . Then

ηt
4
E[‖∇f(xt)‖2] ≤ E[f(xt)]−E[f(xt+1)]+(Lηt+θ

2
t )
ηtσ

2

2bt
.

(3)

Please check the supplemental material for the proof of this
lemma. Summing over (3) for K iterations, we get:

∑K−1
t=0 ηtE[‖∇f(xt)‖2]≤4(f(x0)−f(xK))+

∑K−1
t=1 (Lηt+θ

2
t )

2ηtσ
2

bt
. (4)

Next, we present the convergence theorem.

Theorem 3.4 If we choose a fixed learning rate, ηt = η; a
fixed dropout ratio in the sparsification function, θt = θ;
and a fixed mini-batch size, bt = b; then the following holds:

min0≤t≤K−1 E[‖∇f(xt)‖2]≤ 4(f(x0)−f(xK−1))
K +(Lη+θ2) 2ησ2

b .

Proof. min0≤t≤K−1 E[‖∇f(xt)‖2] ≤
1
K

∑K−1
t=0 ηtE[‖∇f(xt)‖2], as ‖∇f(xt)‖2 ≥ 0. By

(4), we get the theorem. �

Theorem 3.5 If we apply the diminishing stepsize, ηt, sat-
isfying

∑∞
t=0 ηt = ∞,

∑∞
t=0 η

2
t < ∞, our compression

algorithm guarantees convergence with a diminishing drop-
out ratio, θt, if θ2

t = Lηt.

Proof. If we randomly choose the output, xout, from
{x0, ..., xK−1}, with probability ηt∑K−1

t=0 ηt
for xt, then we

have:

E[‖∇f(xout)‖2] =
∑K−1
t=0 ηtE[‖∇f(xt)‖2]∑K−1

t=0 ηt
(5)

≤ 4(f(x0)−f(x∗)∑K−1
t=0 ηt

+
∑K−1
t=0 (Lηt+θ

2
t )2ηtσ

2

b
∑K−1
t=0 ηt

.(6)

Note that
∑K−1
t=0 ηt →∞, while∑K−1

t=0 (Lηt + θ2
t )2ηtσ

2 =
∑K−1
t=0 4Lη2

t σ
2 <∞,

and we have E[‖∇f(xout)‖2]→ 0. �

4 EVALUATION

Our experiments consist of 2 parts to assess the proposed
techniques. First, we validate the convergence theory and
its assumptions with AlexNet on ImageNet and ResNet32
on CIFAR10, which sufficiently cover typical workloads in
traditional linear and recent non-linear neural architectures.
Then, we show that FFT-based method demonstrates better
convergence and faster speed than QSGD (Alistarh et al.,
2017), TernGrad (Wen et al., 2017), Top-k sparsification
(Lin et al., 2017; Alistarh et al., 2018), as our techniques
incur fewer approximation errors, while still delivering a
competitive compression ratio for using both sparsification
and quantization.

Parallelization scheme: we choose BSP for parallelization
for its simplicity in the theoretical analysis: BSP follows
strict synchronizations, allowing us to better observe the
effects of gradient compression toward the convergence by
iterations.

Implementation: we implemented our approach, QSGD,
Top-K, and TernGrad in a C++ DL framework, SuperNeu-
rons (Wang et al., 2018); We used allgather in NVIDIA
NCCL2 to exchange compressed gradients since existing
MPI libraries lack the support for sparse all-reduce (Fig-
ure 1a). Every GPU has a copy of global gradients for
updating parameters after all-gather local gradients. Pa-
rameters need to be synchronized after multiple iterations
to eliminate the precision errors, and here we broadcast
parameters every 10 iterations.

Training setup: The single GPU batch is set to 128 and 64
for ResNet32 and AlexNet respectively. The momentum for
both networks is set to 0.9. The learning rate for Resnet32 is
0.01 at epochs ∈ [0, 130], and 0.001 afterwards; the learning
rate for AlexNet is 0.01 at epochs ∈ [0, 30], 0.001 at epochs
∈ [30, 60], and 0.0001 afterwards.
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Figure 11. the latency for all-gather AlexNet and ResNet32 from
2 to 32 GPUs.
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Figure 12. Empirical verification of Assumption 3.2.
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Figure 13. Empirical validation of Theorem 3.5.

Machine setup: we conducted experiments on the Comet
cluster hosted at San Diego Supercomputer Center. Comet
has 36 GPU nodes, and each node is equipped with 4
NVIDIA TESLA P100 GPUs and 56 Gbps FDR Infini-
Band, Figure 11 shows the all-gather cost almost linearly
increases with the number of GPUs. This is because the to-
tal exchanged messages in all-gather linearly increase with
#GPUs (Gabriel et al., 2004). It demonstrates the necessity
of compression. In our experiments, we used 8 GPUs in
evaluating the distributed training, and up to 32 GPUs in
evaluating the iteration throughput.

4.1 Validation of Theorems

Verification of assumptions: our convergence theorems
rely on Assumption 3.1 and Assumption 3.2. Assump-
tion 3.1 automatically holds due to the bounded gradi-
ents. Assumption 3.2 always hold if p = 1, but it can
break in very rare cases for p > 1. For example, α does
not exist if v̄ = [0, 0], given two opposite gradients, e.g.

0 5 10
wall time/hours

0.3

0.4

0.5

0.6

to
p 

1 
ac

cu
ra

cy

SGD, FP32
FFT
Top-k
QSGD
Terngrad

(a) AlexNet

0 20 40 60 80
wall time/minutes

0.5

0.6

0.7

0.8

0.9

to
p 

1 
ac

cu
ra

cy

SGD, FP32
FFT
Top-k
QSGD
Terngrad

(b) ResNet32

Figure 14. Training wall time on a 8 GPUs cluster: FFT out-
performs TernGrad, QSGD and Top-k in both the speed and test
accuracy. FFT is faster for a high compression ratio by combining
sparsification and quantization, while the better gradient quality of
FFT explains the good accuracy, as we will show in Figure 15.

Table 1. Summarization of Figure 14: the difference of test ac-
curacy and the speedup over SGD.

Method AlexNet
top1 acc

Speedup
w.r.t SGD

ResNet32
top1 acc

Speedup
w.r.t SGD

SGD 56.52% 1 92.11% 1
FFT 56.61%, (+0.09%) 2.26 91.99%, (−0.12%) 1.33x

Top-K 55.07%, (−1.45%) 1.53 90.31%, (−1.80%) 1.12x
QSGD 53.54%, (−2.98%) 1.73 88.66%, (−3.45%) 1.21x

TernGrad-noclip 52.86%, (−3.66%) 1.81 86.90%, (−5.21%) 1.24x

v̄1 = [−0.3, 0.5] and v̄2 = [0.3,−0.5]. Though the scenario
is very unlikely, we empirically validate Assumption 3.2 on
different training tasks by calculating α = ‖v̄−¯̂v‖

‖v̄‖ . From
Figure 13, α ∈ [0, 1] practically sustaining Assumption 3.2.

Validation of theorems: Theorem 3.4 states a large com-
pression ratio, i.e. large θ, can jeopardize the convergence.
The goal of optimization is to find a local optimum, where
the gradient approximates to zero, i.e, E[‖∇f(xt)‖2] →
0, as K → ∞. From the inequality in theorem 3.4,
4(f(x0)−f(xK−1))

K → 0 as K →∞, leaving E[‖∇f(xt)‖2]

bounded by (Lη + θ2) 2ησ2

b . Lη 2ησ2

b is the error term from

SGD, and θ2 2ησ2

b is the error term from the compression.
Compared to SGD, using a large θ in the gradient compres-
sion slacks off the bound for E[‖∇f(xt)‖2], causing the
deterioration on both the validation accuracy and training
loss. As shown in Figure 13, when θ = 0.5 (i.e., sparsify
50%), the accuracy and loss traces of AlexNet and ResNet32
behave exactly the same as SGD (no sparsification). When
θ = 0.9 (i.e., sparsify 90%), both the training loss and vali-
dation accuracy significantly deviate from SGD, as a large
θ increases the error term 2ησ2θ2

b loosening the bound for
E[‖∇f(xt)‖2]. Therefore, θ is critical to retain the same
performance as SGD, and it is tricky to select θ in practice.
We present Theorem.3.5 to resolve this issue.

Theorem 3.5 states that our FFT-based sparsified SGD is
guaranteed to converge with a diminishing compression
ratio. The theorem compensates for Theorem 3.4, indicating
that a large θ can still deliver the same accuracy as SGD if
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Figure 15. (a)→(d): Histogram of reconstructed gradients (green) by FFT (θ = 0.85), Top-k (θ = 0.85), QSGD and Terngrad v.s. the
original. The reconstructed gradients by FFT is the closest to the original(FP32). (e) Cumulative error distribution of |gi − ĝi|, where gi
is the i-th true gradient, and ĝi is the i-th sparsified gradient. FFT incurs less errors than other approaches for 99.7% of the gradients.
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Figure 16. Scalability from 2 to 32 GPUs: we measure the itera-
tion throughput, and calculate the speedup w.r.t 1 GPU.

we shrink the θ in the training. In practice, we can shrink θ
along with the learning rate η for the condition of θ2

t = Lηt.
Empirical results in Figure 13 validate Theorem 3.5. For
example, by setting θ = 0.9 (drop 90%), all of the networks
fail to converge to the same case of SGD. However, the
compression achieves the same result as SGD in the same
epochs simply by diminishing θ from 0.9 to 0 at the 30th
epoch for AlexNet, and at the 130th epoch for ResNet32.
Therefore, we claim both Theorem 3.4 and Theorem 3.5 are
legitimate.

4.2 Algorithm Comparisons

Choice of Algorithms: Here we evaluate our FFT-based
techniques against 3 major gradient compression algorithms,
Top-k sparsification (Lin et al., 2017; Alistarh et al., 2018;
Aji & Heafield, 2017), and Terngrad (Wen et al., 2017)
and QSGD (Alistarh et al., 2017). The baseline method is
SGD using 32 bits float. Top-k sparsification thresholds
the gradients w.r.t their magnitude, and the compression
ratio is determined by 1/(1-θ), where θ is the drop-out ratio.
Please note that Top-k variant e.g. DGC (Lin et al., 2017)
utilizes heuristics like error accumulation and momentum
correction to boost performance. To fairly evaluate Top-k
sparsification against FFT based sparsification, we evaluated
the vanilla Top-k v.s. the vanilla FFT sparsification, and
finding heuristics to boost FFT sparsification is orthogonal
to this study. Both Terngrad and QSGD map gradients to a
discrete set. Specifically, Terngrad maps each gradient to the

set of {−1, 0, 1}∗max(|g|), and thus 2 bits are sufficient to
encode a gradient. Instead, QSGD uses N bits to maps each
gradient to a uniformly distributed discrete set containing
2N bins. Please note TernGrad does not quantize the last
classification layer to keep good performance (Wen et al.,
2017), while we sparsify the entire gradients.

Algorithm Setup: Regarding Top-k and FFT based sparsi-
fication, results from Figure 13 and (Alistarh et al., 2018)
show an obvious convergence slowdown after θ > 90%.
To maintain a reasonable accuracy, we choose θ = 85% for
both top-k and FFT based sparsification. We use min = −1
and max = 1 as the boundaries, and 10 bits in initializ-
ing our N-bit quantizer. Therefore, the compression ratio
for Top-k is 1/(1-θ) = 6.67x and FFT based is 21.3x with
additional 32/10 from quantizers. Terngrad uses 2 bits to
encode a gradient, while we use 8 bins (3 bits) for QSGD
to encode a gradient. As a result, the compression ratio
of Terngrad is 16x and QSGD is 10.6x. Please note we
calculate the compression ratio w.r.t gradients as gradient
exchanges dominate communications in BSP. Following a
similar setup in Figure 13, each algorithm is set to run 180
epochs on CIFAR10 and 70 epochs on ImageNet using 8
GPUs.

4.2.1 Result analysis

Figure 14 demonstrates our framework outperforms QSGD,
Terngrad, and Top-k in both the final accuracy and the train-
ing wall time on an 8 GPU cluster, and Table 1 summarizes
the performance. Particularly, FFT consistently reaches a
similar accuracy to SGD with the highest speedup. To fur-
ther investigate the algorithmic and system advantages of
FFT method, we investigate the gradient quality and the
scalability of iteration throughput.

The algorithmic advantages of FFT: we claim the algorith-
mic advantages of FFT for preserving the original gradient
distribution and rendering fewer reconstruction errors than
others. We uniformly sampled the gradients of ResNet32
every 10 epochs during the training. Figure 15 demonstrates
the distribution of reconstructed gradients w.r.t the gradients
before the compression. FFT is the only one that retains the
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original gradient distribution, though θ = 85% frequency
has been removed. In contrast, Top-k loses the peak for
eliminating the near-zero elements at the same θ. Similarly,
QSGD presents 7 clusters for using 8 bins to represent a
gradient; and, in general, TernGrad shows 3 major clus-
ters around {0, -0.05, 0.05} for using a quantization set
of {-1, 0, 1}. Please note that Terngrad shows 11 bars;
this is due to the aggregation of sparsified gradients from
each node. Aside from qualitatively inspecting the gradient
distribution, we also quantitatively examined the empirical
cumulative distribution of the reconstruction error in Fig-
ure 15e. FFT demonstrates the lowest error within the range
of [10−5, 10−2]. Therefore, FFT can reach better accuracy
in the same training iterations.

The system advantages of FFT: our compression frame-
work fully exploits both the gradient sparsity and the re-
dundancy in 32-bit floating point by further quantizing the
FFT sparsified gradient. This enables FFT to deliver a much
higher iteration throughput than QSGD, TernGrad, and Top-
K. Following the same setting in Figures 14, Figure 16
demonstrates the iteration throughput of training AlexNet
and ResNet32 from 2 to 32 GPUs. Please note using a very
large θ (e.g., 0.999) can get an impressive speedup, but it
also drastically hurts the final accuracy. Here we still use
θ = 85%. The gradients of AlexNet (ImageNet) is around
250 MB, while the gradients of ResNet32 (CIFAR-10) are
only 6MB. Therefore, the scalability of AlexNet is generally
better than ResNet32. Better results are also observable if
using a slow network, e.g. 100MB Gbps. When GPUs ≤ 4,
the speedup is similar as communications are intra-node
through PCI-E. FFT still consistently demonstrate the high-
est iteration throughput for a better compression ratio when
GPUs increase from 8 to 32.

5 RELATED WORK

We categorize the existing lossy gradient compression into
two groups: (1) quantization and (2) sparsification.

Quantization: 1-bit SGD (Seide et al., 2014) is among the
first to quantize gradients to alleviate the communication
cost in the distributed training. Specifically, it quantizes
a 32-bit IEEE-754 float into a binary of [0, 1] to achieve
a compression ratio of 32×. Though their methods are
purely heuristic, and their empirical validations demon-
strate a slight loss of accuracies, it shows the possibility
to train a network with highly lossy gradients. Subse-
quently, several quantization methods have been proposed.
Flexpoint (Köster et al., 2017) uses block floating-point
encoding based on current gradient/weight values. HOG-
WILD! (De Sa et al., 2015) quantizes both weights and
gradients into 8-bit integers by rounding off floats (i.e.,
low-precision training); but this idea is largely restricted
by the availability of low-precision instruction sets. Tern-

Grad (Wen et al., 2017) quantizes a gradient as [-1, 0,
1]∗|max(g)|, while QSGD (Alistarh et al., 2017) stochas-
tically quantizes gradients onto a uniformly discretized set.
Both approaches distribute the precision uniformly across
the representable range—ignoring both the distribution and
the range of the gradients. As we show, gradients follow a
normal distribution (Figure 4). In our range-based quantizer,
we allocate precisions for the range and the distribution
of the values to better exploit the limited number of bits.
Most importantly, QSGD and TernGrad damage the origi-
nal gradient distribution due to limited representable values
after the quantization (Figure 15). As a result, TernGrad
and QSGD incur an observable deterioration in the final
accuracy (Table 1).

Sparsification: Aji and Heafield (Aji & Heafield, 2017)
present the very first Top-k gradient sparsification showing
that the training can be done with a small accuracy loss by
setting the 99% smallest gradients to zeros. Based on the
Top-k thresholding, DGC (Han et al., 2015) proposes heuris-
tics like momentum correction and error accumulation to
resolve the accuracy loss in the vanilla Top-k. Please note
that these heuristics are orthogonal to our methods and can
also be applied to improve ours. Cédric et al. (Renggli et al.,
2018) proposes a communication sparsification approach
called SPARCML. Different from ours, the SPARCML fo-
cuses on the implementation of MPI collective operations of
sparse data. D. Alistarh et al. (Alistarh et al., 2018) analyze
the convergence of Top-k compression. Both (Alistarh et al.,
2018) and we noticed a significant convergence slowdown at
a large sparsity. As we analyzed, these Top-k methods also
distort the gradient distribution at a large sparsity, yielding
higher approximation errors than the original gradients. At
the same sparsity (θ), our FFT method is much better at
preserving the original gradient distribution and shows less
approximation error and better results.

6 CONCLUSION

Communication of gradients is a major bottleneck for
training DNNs in large-scale computers. To improve the
distributed training efficiency, we propose a compression
framework using a sparsification method in the frequency
domain, and a range-based, variable-precision, floating-
point representation to quantize and compress the gradient
frequencies after sparsification. We proved theoretically
that our compression methodology preserves the conver-
gence and the accuracy of the DNN. It also provides enough
data parallelism to exploit the computation power of current
GPUs. Experimental evaluation on a distributed heteroge-
neous platform has shown that the our method effectively
improves the scalability of DNN training without compro-
mising the accuracy.
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Lemma .1 Assume ηt ≤ 1
4L , θ

2
t ≤ 1

4 . Then

ηt
4
E[‖∇f(xt)‖2] ≤ E[f(xt)]− E[f(xt+1)] + (Lηt + θ2

t )
ηtσ

2

2bt
. (7)

Proof. By Lipschitz continuity,

f(xt+1) = f(xt − ηtv̂t)

≤ f(xt) + 〈∇f(xt),−ηtv̂t〉+
L

2
‖ηtv̂t‖2

= f(xt) + 〈∇f(xt),−ηtvt〉+ 〈∇f(xt),−ηt(v̂t − vt)〉+
L

2
‖ηtv̂t‖2

≤ f(xt) + 〈∇f(xt),−ηtvt〉+ ηt‖∇f(xt)‖‖v̂t − vt‖+
L

2
‖ηtv̂t‖2

≤ f(xt) + 〈∇f(xt),−ηtvt〉+ ηt‖∇f(xt)‖‖v̂t − vt‖+
L

2
η2
t ‖vt‖2

≤ f(xt) + 〈∇f(xt),−ηtvt〉+
ηt
2
‖∇f(xt)‖2 +

ηt
2
‖v̂t − vt‖2 +

L

2
η2
t ‖vt‖2

≤ f(xt) + 〈∇f(xt),−ηtvt〉+
ηt
2
‖∇f(xt)‖2 +

ηtθ
2
t

2
‖vt‖2 +

L

2
η2
t ‖vt‖2

= f(xt) + 〈∇f(xt),−ηtvt〉+
ηt
2
‖∇f(xt)‖2 +

ηt
2

(Lηt + θ2
t )‖vt‖2

Note that conditioning on xt, E[vt|xt] = ∇f(xt). Then take expectation on both sides, and use the relationship that

E[‖vt‖2|xt] = E[‖vt −∇f(x)‖2|xt] + ‖E[vt|xt]‖2

= E[‖vt −∇f(x)‖2|xt] + ‖∇f(xt)‖2

≤ σ2

bt
+ ‖∇f(xt)‖2

We have

E[f(xt+1)|xt] ≤ f(xt) + 〈∇f(xt),−ηtE[vt|xt]〉+
ηt
2
‖∇f(xt)‖2 +

ηt
2

(Lηt + θ2
t )E[‖vt‖2|xt]

≤ f(xt)− ηt
2
‖∇f(xt)‖2 +

ηt
2

(Lηt + θ2
t )(

σ2

bt
+ ‖∇f(xt)‖2)

= f(xt)− ηt
2

(1− Lηt − θ2
t )‖∇f(xt)‖2 + (Lηt + θ2

t )
ηtσ

2

2bt

Note that Lηt ≤ 1/4, θ2
t ≤ 1/4, and take expectation over the history, we get

E[f(xt+1)] ≤ E[f(xt)]− ηt
4
E[‖∇f(xt)‖2] + (Lηt + θ2

t )
ηtσ

2

2bt

The lemma is proved. �


