'SMILE Lab, University of Electronic Science and Technology of China

Introduction Method [} Experiments

Background 1: Tensor Product Given A < Rhx- ><’a and B ¢ RJixxJda, while |, = J,.

RNNs are powerful sequence modeling tools. We introduce a compact
architecture with Block-Term tensor decomposition to address the
redundancy problem.

Challenges: 1) traditional RNNs suffer from an excess of parameters;
and 2) Tensor-Train RNN has limited representation ability and flexibility
due to the difficulty of searching the optimal setting of ranks.
Contributions: 1) introduces a new sparsely connected RNN
architecture with Block-Term tensor decomposition; and 2) achieves
better performance while maintaining fewer parameters.
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Figure: Architecture of BT-LSTM. The redundant dense connections between input and
hidden state is replaced by low-rank BT representation.

Should be noted that we only substitute the input-nidden matrix
multiplication while retaining the current design philosophy of LSTM.

(f,’,i,’,é;,o,’) =W.x,+U.h, . +b (1)
(Fr11.€10p) = ("(ft,)’"(it,)’tanh(é't)"’(ot,)> (2)

Comparison of complexity and memory usage of vanilla RNN,
Tensor-Train RNN (TT-RNN) and our BT-RNN. In this table, the weight
matrix’'s shape is I x J. Here, Jpax =max, (J, ).k <[1.d].

Method Time Memory
RNN forward O(IJ) O(IJ)
RNN backward  O(N) O(IJ)
TT-BNN forward  O(dIR2d,,,x) O(RI)
TT-BNN backward O(d2IR4d,.x) O(R3I)
BT-BRNN forward O(NdIRdJ,,.x) O(RAI)
BT-RNN backward O(Nd2IRdJ,,,x) O(RAI)

Total #Parameters: Pg.,=N(>"¢_ I, J,R+ Rd)

Figure: The number of parameters w.r.t
Core-order d and Tucker-rank R, in the setting of

| = 4096, J = 256, N = 1. While the vanilla RNN O i e o A s
contains I x J =1048576 parameters. When dis 1%
small, the first part "¢ I, J, R does the main 5 o \
contribution to parameters. While d is large, the =1 b~
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second part R4 does. So we can see the number o
of parameters will go down sharply at first, but rise 1",
up gradually as d grows up (except for the case of
R=1).
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To simplify, i, denotes indices (i,.....i,_4), while iy denotes (i, 4.....iy):
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Background 2: Block-Term Decomposition

I, R;

. /o /g
////' I{ .@; I{ 4.3
! L D) A(12) R2 : ®> Al(\%) R2
Il ~ o I + ... + o I
I A I Al(\})
I5 9]_ 9N
X
Figure: X =N Grei AN g A og .. 0y ALY

BT-RNN Model: 1) Tensorizing W and x; 2) Decomposing W with BTD; 3)
Computing W.x; 4) Traing from scratch via BPTT!
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(a) vector to tensor

3-order tensors.

Implementation: W cRJIxI;'W ¢ Rdixhxdpx--xdgxla where I = L1, ...

B -
J I3

(b) matrix to tensor
Figure: Step 1: Tensorization operation in a case of

W X y
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Figure: Step 2 & 3: Decomposing weight

matrix and computing y = WX.

I, and

J=J,J,...d,. G,eRRix-xRs denotes the core tensor, A'f) c RlaxJaxRa denotes the

factor tensor.
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Conclusion
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We proposed a Block-Term RNN architecture to address the redundancy problem in
RNNs. Experiment results on 3 challenge tasks show that our BT-RNN architecture

can not only consume several orders fewer parameters but also improve the model

performance over standard traditional LSTM and the TT-LSTM.
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Tasks: 1. Action Recognition in Videos; 2. Image Generation; 3. Image Captioning; 4. Sensitivity

Analysis on Hyper-Parameters.
Datasets: 1. UCF11 YouTube Action dataset; 2. MNIST; 3. MSCOCO.
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Method Accuracy
Original 0.712
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Figure: Performance of different RNN models on the Action

Epoch

Recognition task trained with UCF11.
Task 1: We use a single LSTM cell as the model architecture to evaluate BT-LSTM against LSTM
and TT-LSTM. The frames in video are directly input to the LSTM cell. The figure in left
demonstrates the training loss of different models. From these experiments, we claim that our
BT-LSTM has: 1) 8 x 104 times parameter reductions; 2) faster convergence; 3) better model

efficiency.
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(a)LST
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(C) LSTM: A train traveling down

tracks next to a forest.

TT-LSTM: A train traveling down
train tracks next to a forest.
BT-LSTM: A train traveling through

a lush green forest.

(g) Truth:W/
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Ing next to each other.
next to each other.

for a photo.
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(h)y = W.x,
P=4096

Task 2:

ages.

(d) LSTM: A group of people stand-
TT-LSTM: A group of men standing

BT-LSTM: A group of people posing
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(i) d=2,
N=1, P=528

R=4,

()d=2, R=1,
N=1, P=129

In this experiment,
encoder-decoder architecture to generate im-
We only substitute the encoder net-
work to qualitatively evaluate the LSTM and
BT-LSTM. The result shows that both LSTM
and BT-LSTM can generate comparable im-
ages.

(e) LSTM: A man and a dog are ()
standing in the snow.
TT-LSTM: A man and a dog are in
the snow.

BT-LSTM: A man and a dog playing
with a frisbee.

Table: State-of-the-art results on UCF11 dataset reported
in literature, in comparison with our best model.

we use dan

LSTM: A large elephant
standing next to a baby elephant.
TT-LSTM: An elephant walking
down a dirt road near trees.
BT-LSTM: A large elephant walking
down a road with cars.

Task 3: We use the architecture described in [4], all the three models can generate proper
sentences but with little improvement in BT-LSTM.
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(k) d=2, R=1,
N=2, P=258

() d=4, R=4,
N=1, P=384

Figure: The trained W for different BT-LSTM settings. The closer to (a), the better W is.

Task 4: In this experiment, we use a single LSTM cell as the model architecture to evaluate
BT-LSTM against LSTM and TT-LSTM.



