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Introduction
RNNs are powerful sequence modeling tools. We introduce a compact
architecture with Block-Term tensor decomposition to address the
redundancy problem.
Challenges: 1) traditional RNNs suffer from an excess of parameters;
and 2) Tensor-Train RNN has limited representation ability and flexibility
due to the difficulty of searching the optimal setting of ranks.
Contributions: 1) introduces a new sparsely connected RNN
architecture with Block-Term tensor decomposition; and 2) achieves
better performance while maintaining fewer parameters.

Figure: Architecture of BT-LSTM. The redundant dense connections between input and
hidden state is replaced by low-rank BT representation.

Should be noted that we only substitute the input-hidden matrix
multiplication while retaining the current design philosophy of LSTM.(
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Analysis
Comparison of complexity and memory usage of vanilla RNN,
Tensor-Train RNN (TT-RNN) and our BT-RNN. In this table, the weight
matrix’s shape is I ×J. Here, Jmax =maxk(Jk),k ∈ [1,d].

Method Time Memory
RNN forward O(IJ) O(IJ)
RNN backward O(IJ) O(IJ)
TT-RNN forward O(dIR2Jmax) O(RI)
TT-RNN backward O(d2IR4Jmax) O(R3I)
BT-RNN forward O(NdIRdJmax) O(RdI)
BT-RNN backward O(Nd2IRdJmax) O(RdI)

Total #Parameters: PBTD =N(
∑d

k=1 IkJkR +Rd)

Figure: The number of parameters w.r.t
Core-order d and Tucker-rank R, in the setting of
I = 4096,J = 256,N = 1. While the vanilla RNN
contains I × J = 1048576 parameters. When d is
small, the first part

∑d
1 IkJkR does the main

contribution to parameters. While d is large, the
second part Rd does. So we can see the number
of parameters will go down sharply at first, but rise
up gradually as d grows up (except for the case of
R = 1).
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Method
Background 1: Tensor Product Given A ∈RI1×···×Id and B ∈RJ1×···×Jd, while Ik = Jk .
To simplify, i−k denotes indices (i1, . . . , ik−1), while i+k denotes (ik+1, . . . , id):
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Background 2: Block-Term Decomposition
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BT-RNN Model: 1) Tensorizing W and x; 2) Decomposing W with BTD; 3)
Computing W ·x; 4) Traing from scratch via BPTT!

(a)vector to tensor (b)matrix to tensor

Figure: Step 1: Tensorization operation in a case of
3-order tensors.

Figure: Step 2 & 3: Decomposing weight
matrix and computing y = Wx.

Implementation: W ∈RJ×I, W ∈RJ1×I1×J2×···×Jd×Id, where I = I1I2 · · · Id and
J = J1J2 · · ·Jd. Gn ∈RR1×···×Rd denotes the core tensor, A(d)

n ∈RId×Jd×Rd denotes the
factor tensor.
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Conclusion
We proposed a Block-Term RNN architecture to address the redundancy problem in
RNNs. Experiment results on 3 challenge tasks show that our BT-RNN architecture
can not only consume several orders fewer parameters but also improve the model
performance over standard traditional LSTM and the TT-LSTM.
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Experiments
Tasks: 1. Action Recognition in Videos; 2. Image Generation; 3. Image Captioning; 4. Sensitivity
Analysis on Hyper-Parameters.
Datasets: 1. UCF11 YouTube Action dataset; 2. MNIST; 3. MSCOCO.
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LSTM=Params: 58.9M-Top: 0.697

BTLSTM=R: 1-CR: 81693x-Top: 0.784

BTLSTM=R: 2-CR: 40069x-Top: 0.803

BTLSTM=R: 4-CR: 17388x-Top: 0.853

TTLSTM=R: 4-CR: 17554x-Top: 0.781

Figure: Performance of different RNN models on the Action
Recognition task trained with UCF11.

Method Accuracy

Orthogonal
Approaches

Original 0.712
Spatial-temporal 0.761
Visual Attention 0.850

RNN
Approaches

LSTM 0.697
TT-LSTM 0.796
BT-LSTM 0.853

Table: State-of-the-art results on UCF11 dataset reported
in literature, in comparison with our best model.

Task 1: We use a single LSTM cell as the model architecture to evaluate BT-LSTM against LSTM
and TT-LSTM. The frames in video are directly input to the LSTM cell. The figure in left
demonstrates the training loss of different models. From these experiments, we claim that our
BT-LSTM has: 1) 8×104 times parameter reductions; 2) faster convergence; 3) better model
efficiency.
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(a)LSTM, #Params:1.8M
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(b) BT-LSTM,
#Params:1184

Task 2: In this experiment, we use an
encoder-decoder architecture to generate im-
ages. We only substitute the encoder net-
work to qualitatively evaluate the LSTM and
BT-LSTM. The result shows that both LSTM
and BT-LSTM can generate comparable im-
ages.

(c) LSTM: A train traveling down
tracks next to a forest.
TT-LSTM: A train traveling down
train tracks next to a forest.
BT-LSTM: A train traveling through
a lush green forest.

(d) LSTM: A group of people stand-
ing next to each other.
TT-LSTM: A group of men standing
next to each other.
BT-LSTM: A group of people posing
for a photo.

(e) LSTM: A man and a dog are
standing in the snow.
TT-LSTM: A man and a dog are in
the snow.
BT-LSTM: A man and a dog playing
with a frisbee.

(f) LSTM: A large elephant
standing next to a baby elephant.
TT-LSTM: An elephant walking
down a dirt road near trees.
BT-LSTM: A large elephant walking
down a road with cars.

Task 3: We use the architecture described in [4], all the three models can generate proper
sentences but with little improvement in BT-LSTM.

(g) Truth:W′
P=4096

(h) y = W · x,
P=4096

(i) d=2, R=1,
N=1, P=129

(j) d=2, R=4,
N=1, P=528

(k) d=2, R=1,
N=2, P=258

(l) d=4, R=4,
N=1, P=384

Figure: The trained W for different BT-LSTM settings. The closer to (a), the better W is.

Task 4: In this experiment, we use a single LSTM cell as the model architecture to evaluate
BT-LSTM against LSTM and TT-LSTM.


