

Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition

Jinmian Ye1, Linnan Wang2, Guangxi Li1, Di Chen1, Shandian Zhe3, Xinqi Chu4, Zenglin Xu1

¹SMILE Lab, University of Electronic Science and Technology of China ²Brown University ³University of Utah ⁴Xjera Labs pte.ltd

0.697

0.853

Introduction

RNNs are powerful sequence modeling tools. We introduce a compact architecture with Block-Term tensor decomposition to address the redundancy problem.

Challenges: 1) traditional RNNs suffer from an excess of parameters; and 2) Tensor-Train RNN has limited representation ability and flexibility due to the difficulty of searching the optimal setting of ranks. Contributions: 1) introduces a new sparsely connected RNN architecture with Block-Term tensor decomposition; and 2) achieves

better performance while maintaining fewer parameters.

Figure: Architecture of BT-LSTM. The redundant dense connections between input and hidden state is replaced by low-rank BT representation.

Should be noted that we only substitute the input-hidden matrix multiplication while retaining the current design philosophy of LSTM.

$$\left(\mathbf{f}_{t}', \mathbf{i}_{t}', \mathbf{\tilde{c}}_{t}', \mathbf{o}_{t}'\right) = \mathbf{W} \cdot \mathbf{x}_{t} + \mathbf{U} \cdot \mathbf{h}_{t-1} + \mathbf{b}$$
(1)

$$(\mathbf{f}_t, \mathbf{i}_t, \mathbf{\tilde{c}}_t, \mathbf{o}_t) = (\sigma(\mathbf{f}_t'), \sigma(\mathbf{i}_t'), \tanh(\mathbf{\tilde{c}}_t'), \sigma(\mathbf{o}_t'))$$
(2)

Analysis

Comparison of complexity and memory usage of vanilla RNN, Tensor-Train RNN (TT-RNN) and our BT-RNN. In this table, the weight matrix's shape is $I \times J$. Here, $J_{max} = \max_{k} (J_k), k \in [1, d]$.

Method	Time	Memory
RNN forward	O(IJ)	O(<i>IJ</i>)
RNN backward	O(IJ)	O(IJ)
TT-RNN forward	$O(dIR^2J_{max})$	O(RI)
TT-RNN backward		$O(R^3I)$
BT-RNN forward	$O(NdIR^dJ_{max})$	$O(R^{dI})$
BT-RNN backward	$O(Nd^2IR^dJ_{max})$	$O(R^{dI})$

Total #Parameters: $P_{BTD} = N(\sum_{k=1}^{d} I_k J_k R + R^d)$

Figure: The number of parameters w.r.t Core-order *d* and Tucker-rank *R*, in the setting of I = 4096, J = 256, N = 1. While the vanilla RNN contains $I \times J = 1048576$ parameters. When d is small, the first part $\sum_{1}^{d} I_{k} J_{k} R$ does the main contribution to parameters. While d is large, the second part R^d does. So we can see the number of parameters will go down sharply at first, but rise up gradually as d grows up (except for the case of R = 1).

Method

Background 1: Tensor Product Given $A \in \mathbb{R}^{I_1 \times \dots \times I_d}$ and $\mathcal{B} \in \mathbb{R}^{J_1 \times \dots \times J_d}$, while $I_k = J_k$. To simplify, i_k^- denotes indices $(i_1, ..., i_{k-1})$, while i_k^+ denotes $(i_{k+1}, ..., i_d)$:

$$(\mathcal{A} \bullet_{k} \mathcal{B})_{i_{k}^{-}, i_{k}^{+}, j_{k}^{-}, j_{k}^{+}} = \sum_{p=1}^{l_{k}} \mathcal{A}_{i_{k}^{-}, p, i_{k}^{+}} \mathcal{B}_{j_{k}^{-}, p, j_{k}^{+}}$$
(3)

Background 2: Block-Term Decomposition

Figure: $\mathfrak{X} = \sum_{n=1}^{N} \mathcal{G}_n \bullet_1 \mathcal{A}_n^{(1)} \bullet_2 \mathcal{A}_n^{(2)} \bullet_3 \cdots \bullet_d \mathcal{A}_n^{(d)}$

BT-RNN Model: 1) Tensorizing W and x; 2) Decomposing W with BTD; 3) Computing W.x; 4) Traing from scratch via BPTT!

Implementation: $\mathbf{W} \in \mathbb{R}^{J \times I}$, $\mathbf{W} \in \mathbb{R}^{J_1 \times I_1 \times J_2 \times \cdots \times J_d \times I_d}$, where $I = I_1 I_2 \cdots I_d$ and $J = J_1 J_2 \cdots J_d$. $g_n \in \mathbb{R}^{R_1 \times \cdots \times R_d}$ denotes the core tensor, $\mathcal{A}_n^{(d)} \in \mathbb{R}^{I_d \times J_d \times R_d}$ denotes the factor tensor.

$$\mathbf{W} \cdot \mathbf{x}_{t} = \sum_{n=1}^{N} \mathcal{X}_{t \cdot 1} \mathcal{A}_{n}^{(1)} \cdot_{2} \cdots \cdot_{d} \mathcal{A}_{n}^{(d)} \cdot_{1,2,\dots,d} \mathcal{G}_{n}$$

$$\tag{4}$$

matrix and computing y = Wx.

Conclusion

3-order tensors.

We proposed a Block-Term RNN architecture to address the redundancy problem in RNNs. Experiment results on 3 challenge tasks show that our BT-RNN architecture can not only consume several orders fewer parameters but also improve the model performance over standard traditional LSTM and the TT-LSTM.

References

- [1] L. De Lathauwer. Decompositions of a higher-order tensor in block termspart ii: Definitions and uniqueness. SIAM SIMAX' 2008.
- [2] Y. Yang, D. Krompass, and V. Tresp. Tensor-Train Recurrent Neural Networks for Video Classification. In ICML' 2017.
- [3] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Draw: A recurrent neural network for image generation. In ICML' 2015.
- [4] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR' 2015.

Experiments

Tasks: 1. Action Recognition in Videos; 2. Image Generation; 3. Image Captioning; 4. Sensitivity Analysis on Hyper-Parameters.

Datasets: 1. UCF11 YouTube Action dataset; 2. MNIST; 3. MSCOCO.

Table: State-of-the-art results on UCF11 dataset reported in literature, in comparison with our best model.

Original

TT-LSTM

BT-LSTM

Figure: Performance of different RNN models on the Action Recognition task trained with UCF11.

Task 1: We use a single LSTM cell as the model architecture to evaluate BT-LSTM against LSTM and TT-LSTM. The frames in video are directly input to the LSTM cell. The figure in left demonstrates the training loss of different models. From these experiments, we claim that our BT-LSTM has: 1) 8 x 104 times parameter reductions; 2) faster convergence; 3) better model efficiency.

Task 2: In this experiment, we use an encoder-decoder architecture to generate images. We only substitute the encoder network to qualitatively evaluate the LSTM and BT-LSTM. The result shows that both LSTM and BT-LSTM can generate comparable images.

(c) LSTM: A train traveling down

TT-LSTM: A train traveling down

BT-LSTM: A train traveling through

tracks next to a forest.

a lush green forest.

train tracks next to a forest.

next to each other.

for a photo.

(e) LSTM: A man and a dog are (d) LSTM: A group of people standing next to each other. standing in the snow. TT-LSTM: A group of men standing TT-LSTM: A man and a dog are i the snow. BT-LSTM: A man and a dog playing **BT-LSTM**: A group of people posing

with a frisbee.

LSTM: A large elephant standing next to a baby elephant. TT-LSTM: An elephant walking down a dirt road near trees. BT-LSTM: A large elephant walking down a road with cars.

Task 3: We use the architecture described in [4], all the three models can generate proper sentences but with little improvement in BT-LSTM.

Task 4: In this experiment, we use a single LSTM cell as the model architecture to evaluate BT-LSTM against LSTM and TT-LSTM.